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Figure 1: The simulated data set - zt vs yt

The data set consists of 100 realizations simulated for yt and zt from the following model. This is a
first order regression with random walk on both coefficients plus and AR(1) term. The model is given so
we will not be discussing model choice but just using the given model.

yt = β0,t + β1,tzt + xt + vt, vt ∼ N(0, ν)
β0,t = β0,t−1 + w0,t, w0,t ∼ N(0, u0)
β1,t = β1,t−1 + w1,t, w1,t ∼ N(0, u1)
xt = ρxt−1 + w2,t, w2,t ∼ N(0, u2)

We will set up our DLM in the following manner:

yt = F ′tθt + vt, vt ∼ N(0, V )
θt = Gθt−1 + wt, wt ∼ N(0,W )

Our specific model has these particular values for the DLM are constructed by superposition of the
regression model and AR(1) model: F ′t = [1, zt, 1], V = ν, θ′t = [β0,t, β1,t, xt], w′t = [w0,t, w1,t, w2,t],

G =

1 0 0
0 1 0
0 0 ρ

 ,W =

u0 0 0
0 u1 0
0 0 u2


1 Known parameters

In this section we will assume that the parameters of the model are known and fixed where ν = u0 =
u1 = u2 = 1, and ρ = 0.9. The most straight-forward way of solving this problem is with a Kalman
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filter. Because all of the parameters are known no MCMC or discount factors are needed. All we will
need is a prior for the state space and we will use N(m0, C0), where m′0 = [0, 0, 0] and a diagonal matrix
C0 = 10000 ∗ I.

Kalman Filter equations:

θt−1|Dt−1 ∼ N(mt−1, Ct−1)
θt|Dt−1 ∼ N(at, Rt)
yt|Dt−1 ∼ N(ft, qt)
yt|Dt−1 ∼ N(mt, Ct)

Forward Filter (runs from t=1:T)

at = Gmt−1

Rt = GCt−1G
′ +W

ft = F ′tat

qt = F ′tRtFt + V

et = yt − F ′tat

mt = at +Atet

Ct = Rt −AtA
′
tqt

At = RtFt/qt

Backward Smoother: In this notation we set the initial values to at(0) = mT and Rt(0) = CT and run
this from k=(T-1):1

θt−k|Dt ∼ N(at(−k), Rt(−k))
at(−k) = mt−k +Bt−k[at(−k + 1)− at−k+1]
Rt(−k) = Ct−k +Bt−k[Rt(−k + 1)−Rt−k+1]B′t−k

Bt = CtG
′Rt+1

I do not like the way the known parameters make the graph look; the data is in black, mean fit is in
red and 95% PIs are in green. The green 95% PI bounds are far too wide and even off the screen and it is
probably because the scale between V and W in the known parameters is not great. So, I did the second
graph with a adjustments to W to show what I would prefer to have as set parameters. These issue will
disappear in 2c) when the parameters are estimated. In the smoothing plots you can see that there is some
smoothing happening in the second plot when the parameters of W are adjusted. We see the residual plots
have an odd shape because the fit is good on both ends and poor in the middle. But the PI’s are poor
but the ACF is good; it seems like the model may be fine but the parameters may not be the best. I am
hoping that the fit will greatly improve when we allow the parameters to be unknown and estimated.
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(b) u0, u1=0.001

Figure 2: Filter Fit
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Figure 3: Backward Smoother Fit
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Figure 4: Smooth Fit Residual Plots
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2 Sequential Monte Carlo

Sequential Monte Carlo where all the parameters are known can be done with any of the algorithms in
Chapter 6. I will use the SIRS algorithm but could just as easily use a Lui and West, Storvik, or PL
algorithm. This is a NDLM will use the optimal importance density which is a Normal distribution with
following mean and variance:

V (θt|θt−1, yt) = [W−1 + FtV
−1F ′t ]

−1

E(θt|θt−1, yt) = V (θt|θt−1, yt)[W−1Gθt−1 + FtV
−1yt]

The weights associated from this optimal importance density are:

wt ∝ wt−1 ∗N(yt|F ′tGθt−1, V + FtWF ′t)

I will use a resampling if the particles drop too low so there is not degenerecy in the estimates of β0,t, β1,t, xt.
The algorithm for SIRS:

This will use the same θ, Ft, G, W, and V as before. The prior for π(θ) ∼ N(m0, C0) where m′0 = [0, 0, 0]
and C0 = I ∗ 1e+ 7 and the initial weights will be set to wm

1 = 1/M for m=1:M.

1. We sample θm fromMVN(E(θt|θt−1, yt), V (θt|θt−1, yt)) with the means and variances specified above.

2. Compute the new weights: wt ∝ wt−1 ∗N(yt|F ′tGθt−1, V + FtWF ′t)

3. Normalize the weights and calculate Mt,eff = 1/
∑M

m=1(w(m)
t )2. If Mt,eff drops below a threshold

value then resample θ(m)
1:t with probability w(m)

t , reset the wieghts to w(m)
t = 1/M .

This results in (θ1:t, wt)m,m = 1 : M and we can plot these results in red and the 95% PI in green; the
data is plotted in black. I had 5,000 particles and resampled if the effective size dropped below 2,500.
Resampling happened 8 percent of the time. The fit and the probability bands are tighter than the
Kalman filter but there is a poor fit in one area. The poor fit makes for odd looking residual plots; this
same feature in the fit appeared in the MCMC with these same set known parameters. The model is not
fitting the middle region of the data well. Either we need a different model or different parameters in the
model.
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Figure 5: SIRS Algorithm
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Figure 6: Residuals

3 Unknown parameters

In this section, we will now have ν, u0,u1,u2, and ρ as unknown parameters in our model that need to
be updated as well. Because of the nature of our linear and Gaussian DLM all of these parameters can
be conjugate priors and sampled through a MCMC algorithm as needed. Parameter learning can also be
done through many sequential Monte Carlo algorithms. The SIRS algorithm does not support parameter
learning. However, Lui and West (2001) and the particle learning algorithms to name a couple do have
schemes for handling unknown parameters and sequential Monte Carlo is possible.

A discount factor or multiple discount factors could be used instead of marginalizing over u0, u1, and
u2 in the W matrix. But I am not going to use them because I am already using MCMC and it takes
little effort to sample these values with the current algorithm. And discount factors are not part of the
sequential Monte Carlo and I want to compare my results between the two methods.

We will replace the backward smoothing step in the Kalman filter process with the backward sampling
step. In the MCMC, we need values for θt for every iteration to condition on to get draws for the other
unknown parameters and the backward sampler is the piece of the algorithm to do this. In this notation
we set the initial values to ht(0) = mT and Ht(0) = CT

ht = mt +Bt(µt+1 − at+1)
Ht = Ct −BtRt+1B

′
t

θt|θt+1 ∼ N(ht, Ht)

The unknown parameters will be sampled via Gibbs steps. The unknown parameters need priors:
π(ρ) ∝ 1, π(ν) ∼ IG(av, Bv), π(u0) ∼ IG(a0, B0), π(u1) ∼ IG(a1, B1), and π(u2) ∼ IG(a2, B2).∏T

t=1N(yt|F ′tθ − t, V )
∏T

t=2N(θt|Gθt−1,W )MVN

B0,0

B1,0

x0

 ∣∣∣∣∣∣
m0

m1

mx

 ,
C0, 0, 0

0, C1, 0
0, 0, Cx

 IG(ν|av, Bv)∗

∗IG(u0|a0, B0)IG(u1|a1, B1)IG(u2|a2, B2)
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ρ|... ∼ N

(∑T
t=2 xt−1xt∑T
t=2 x

2
t−1

,
u2∑T

t=2 x
2
t−1

)

v|... ∼ IG

(
av +

T

2
, Bv +

1
2

T∑
t=1

(yt − β0,t − β1,tzt − xt)2
)

u0|... ∼ IG

(
a0 +

T − 1
2

, B0 +
1
2

T∑
t=1

(β0,t − β0,t−1zt − xt)2
)

u1|... ∼ IG

(
a1 +

T − 1
2

, B1 +
1
2

T∑
t=1

(β1,t − β1,t−1zt − xt)2
)

u2|... ∼ IG

(
a2 +

T − 1
2

, B2 +
1
2

T∑
t=1

(xt − ρxt−1)2
)

Overall, the algorithm for this set up is as follows for q=1:Q MCMC steps.
1. Use the Kalman filter and then backward sampler to get draws for θt conditional on ν, u0,u1,u2, and ρ.
2. Use the Gibbs steps to get draws for ν,u0,u1,u2, and ρ conditional on θt At the end we will have Q
draws for all of the parameters ν, u0,u1,u2,ρ and every θt.

The plots below show the analysis. The first plot includes the time series in black, mean fit in red and
95% PIs in green. The residual plots show that the model does fit better with the unknown parameters
but is still having trouble fitting some of the middle time steps. One could try a different model to see if
this was improved. Maybe a model with a mixture of Normals for the states to allow for possible outliers
in this region. It may just be that that is a short simulated data set and it is this particular realization
that the model is having trouble with. It may also be a good idea to put a Normal prior on ρ to tighten
it to the interval [-1,1] which is desireable for an AR(1) coefficient or even use a Uniform prior and a
Metropolis-Hastings step to sample it. Overall, the fit is pretty good and the 95% PI bands are much
better with the parameter uncertainty included in the model. The MCMC with unknown parameters
seems to have the best fit but the sequential Monte Carlo (SMC) with known parameters had a better
fit than the Kalman filter with known parameters. Parameter learning with SMC maybe difficult because
there are 5 parameters to learn and particle degenerecy will be an issue for sure. I went ahead and did
forecasting out 20 places for this model and not the others because it fit the best. I had to first pick likely
places of z for the next 20 time steps. The forecasting had wide bands and was not worth plotting. The
forecasting is direclty related to the value of W. This analysis may be better if I were using discount factors
instead. Only when W was set very small did the forecast looks reasonable.

Concluding remarks: The Kalman filter in 2a) works well if the parameters ν, u0,u1,u2, and ρ do not
need to be estimated; it is fast and works well. Adjustments can be made with an unknown W by using a
discount factor or an unknown V and adjusting the Kalman filter equations to still use this method. But
we also have an unknown ρ term. The MCMC method in 2c) handles many unknown parameters but is
computationally intensive and takes a long amount of time. Sequential Monte Carlo is an alternative that
is used to cut down on the time to analyze data as it comes in. It is just as time intensive as MCMC when
running it over the history of a data set but it can take in new values and analyze them on line in a fast
and efficient manner. The issues with sequential Monte Carlo are with the need to store a large amount
of particles which is requires large amounts of computer memory and some of the algorithms like SIRS do
not allow for unknown parameters. The Lui and West algorithm based on kernel densities, the Storvik
algorithm based on sufficient statitics, or particle learning algorithm also based on sufficient statitics all can
handle parameter learning but particle degeneracy after a hundred or few hundred time steps (depending
on the amount of unknown parameters) is an issue and resampling is often required. Resampling may
require that MCMC be run again up to that time point, so some of sequential Monte Carlo can be run

6



Time

yt

0 20 40 60 80 100

−
10

−
5

0
5

Figure 7: Model Fit

for a time online but then must be updated. Also, the methods based on sufficient statistics require that
one can calculate the sufficient statitics for the problem at hand. Other things to consider is the model
linearity and Gaussianity, here we assume we have a linear Gaussian DLM but some of the algorithms can
be use for more complex models. Overall, there are many algorithms to choose from but they need to be
picked carefully depending on the problem at hand.

4 Appendix

I was not happy with the fit in part one so I am adding a discount factor to the model. I am hoping this
also will lead to prediction plots that make sense. The discount factor that maximizes the log-likehood is
at δ = 0.61. The fits are so much better than the plots in part one. I think the known W used was just too
large in part one. The forecast intervals are still large but I have plotted the mean forecast for the next 20
possible iterations (z must be guessed and I used znew=57:77 with steps of one because the average space
between z values is 1.07). In general, the discount factor really improves the part one results.

I did not include the residual plots but they were Normal looking in the histogram and qq-plot and did
not have the odd variance issue of any of the other residual plots. I think the discount factor works better
than even the model with 5 unknown parameters. The third model probably would have been better with
a discount factor or multiple discount factors than trying to marginalize over u0, u1, and u2 in W.
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Figure 8: Posteriors

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Residuals

re
si

du

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Normal Q−Q Plot

Residuals

S
am

pl
e 

Q
ua

nt
ile

s

Histogram of residu

Residuals

F
re

qu
en

cy

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
10

20
30

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Residuals

A
C

F

Series  residu

Figure 9: Residuals
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Figure 10: Plots using a discount
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