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1 Poisson Hidden Markov Model

The count data y={y1, y2, ..., yT } i.This will be a Bayesian formulation for a Markov dependent mixture
of K Poisson distributions, specified as:

The Poisson distribution is defined as f(yt|λk) =
λ
yt
k e

−λt

yt!
, t = 1, ..., 240 and the Gamma distribution

in the following parameterization Γ(shape, rate).

yt|zt, (λ1, ..., λK)
ind.∼ Poisson(yt|λzt), t = 1, ..., T

z = (z2, .., zT )|Q ∼
T∏
t=2

Pr(zt+1|zt;Q) =
T∏
t=2

qzt,zt+1

λj
ind∼ Γ(cj , dj), j = 1, ...,K

qi
ind∼ Dirichlet(ai1, ..., aiK), i = 1, ...,K

where qi = (qi1, ..., qiK) is the ith row (
∑K

j=1 qij = 1) of the transition matrix Q. The first hidden state will
be fixed, such as, Pr(z1 = 1) = 1.

The data will be observed movement counts of a fetal lamb by ultrasound over 240 consecutive 5 sec-
ond intervals. There could be hidden states of a relaxed states and excited states, which we will assume
to be Markovian and depend on the previous state. And the observations over intervals will be assumed
to be independent. The data will come from the paper by Puterman (1992).
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Figure 1: Fetal Lamb Movement
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We will show the posteriors for K=2 hidden states (z1,z2) but this can easily be extended to other
numbers of states.
Full conditional:∑

(z2,...,zT )∈{1,2}

(
Pois(y1|λ1)

∏T−1
t=1 qzt−1,ztPois(yt|λzt)

)
Γ(λk|ak, bk)Dir(qi|αi1, αi2)

Posteriors:

λk|... =
∑

(z2,...,zT )∈{1,2}

(
Pois(y1|λ1)

T∏
t=2

qzt−1,ztPois(yt|λzt)

)
Γ(λk|ak, bk)Dir(qi|αi1, αi2)

∝

(
Pois(y1|λ1)

T∏
t=2

Pois(yt|λzt)

)
λak+1
k e−bkλk

∝
(
e−

∑
λk
∑

λytk Izt=k

)
λak+1
k e−bkλk

∝
(
e−

∑
λkIzt=k+bkλkλ

∑
ytIzt=k+ak+1

k

)
∼ Γ(ak +

∑
ytIzt=k, bk +

∑
Izt=k)

Let nij =
∑T−1

t=1 1{zt=i,zt+1=j}

qi|... =
∑

(z2,...,zT )∈{1,2}

(
Pois(y1|λ1)

T∏
t=2

qzt−1,ztPois(yt|λzt)

)
Γ(λk|ak, bk)Dir(qi|αi1, αi2)

∝

(
T∏
t=2

qzt−1,zt

)
Dir(qi|αi1, αi2)

∝ qni1i1 qni2i2 Dir(qi|αi1, αi2)
∝ qni1i1 qni2i2 qαi1−1i1 qαi2−1i2

∝ qni1+αi1−1i1 qni2+αi2−1i2

∼ Dir(ni1 + αi1, ni2 + αi2)

This needs an extra subscript we will call m for the iteration of the MCMC:

zmt |... =
∑

(z2,...,zT )∈{1,2}

(
Pois(y1|λz1)

T∏
t=2

qzmt−1,z
m−1
t

Pois(yt|λzmt )

)
Γ(λk|ak, bk)Dir(qi|αi1, αi2)

∝
∑

(z2,...,zT )∈{1,2}

(
Pois(y1|λz1)

T∏
t=2

qzmt−1,z
m−1
t

Pois(yt|λzmt )

)
∝ qzmt−1,j

qj,zm−1
t+1

Pois(yt|λj)

∝
qzmt−1,j

qj,zm−1
t+1

Pois(yt|λj)∑K
k=1 qzmt−1,k

qk,zm−1
t+1

Pois(yt|λk)

∼ Bin

1,
qzmt−1,j

qj,zm−1
t+1

Pois(yt|λj)∑K
k=1 qzmt−1,k

qk,zm−1
t+1

Pois(yt|λk)
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We will run both K=2 and K=3 models. The priors will be similar to those in Chib(1996). The MCMC
was run 11,000 iterations and the first 1000 were discarded.

Table 1: Summary
Model Parameters Priors Posteriors Model Comparison

K=2 λ1 Γ(1, 2) 0.23 AIC = 362.96
λ2 Γ(2, 1) 2.40 BIC = 376.88

q11, q12 Dir(3, 1) (0.97,0.03) DIC =341.81
q21, q22 Dir(0.5, 0.5) (0.33,0.66) Post=0.00

PPQL1=198.92
PPQL2=178.54
PPLL1=246.68
PPLL2=167.77

K=3 λ1 Γ(1, 2) 0.08 AIC = 350.20
λ2 Γ(2, 1) 0.63 BIC = 381.52
λ3 Γ(3, 1) 3.25 DIC = 386.36

q11, q12, q13 Dir(3, 1, 0.1) (0.93,0.06,0.006) Post=0.999
q21, q22, q23 Dir(0.5, 0.5, 0.5) (0.09,0.89,0.03) PPQL1=189.90
q31, q32, q33 Dir(1, 0.1, 3) (0.23,0.02,0.75) PPQL2=173.15

PPLL1=251.87
PPLL2=157.47

Predicted: yrep ∼ π1Pois(yt|λ1) +π2Pois(yt|λ2), where π1 and π2 are calculated from the posteriors of
qij .
We have the stationary distribution: π = πQ giving: π1 = q2

1−q1+q2 and π2 = 1−π1 for K=2. These will be
used to create predictive samples for y and used in the model comparison. This seems like a good way to
get predictions but it bothers me a little that it does not directly account for zi but then again we would
never know if we would be in a rest or active state when looking directly at the data.

There is a second way to do predicted values here. I could use the current values of z’s to know which
Poisson distribution to draw each ypred from. I will include plots for both methods (see Fig(7))
Model comparison can be used to choose the number of parameters needed in the model, specifically K in
this case. Here will be some standard notation for this section:

• p is the number of parameters in the model (K=2 then p=4, K=3 p=9). We have K2−K parameters
in the Q matrix and K parameters in λ.

• n is the number of observations (n=240)

• l is the log-likelihood computed from the iterative method in Scott(2002). The likelihood computed
directly becomes too small for computational methods:
Lt(k) = Pois(yt|λk)

∑
0 r = 0K−1q(r, k)lt−1(r).

However, the log-likelihood lt is stable can be computes as follows:
πt(k|λk) = Lt(k)/lt
Mt = maxk{lnPois(yt|λk)

∑
r=0 q(r, k)πt−1(r|λk)}

lt = log(lt−1) +Mt + log
(∑K−1

s=0 exp
[
logPois(yt|λs) + log

(∑K−1
r=0 πt−1(r|λs)q(r, s)

)
−Mt

])
l = ln is the recursive log-likelihood of interest we will use.

Types of model comparison (the model with the minimum of all these values is the favored one):

• BIC = −2max(l) + p ln(n)
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• AIC = −2max(l) + 2p

• DIC = 2D − D̂ where D =
∑M

m=0(−2l)/M and D̂ = −2
∑K

r=1 log πMAP
r Pois(y|λMAP

r ) where π is

the stationary distribution. The D̂ is the density equation used when obtaining predicted values for
y.

• The posterior method (we will denote as Post) described in Scott(2002) for choosing between any
number of K (up to Kmax=240 of course) can be done for independent Gibb samples of each model.
We want a posterior for K, which is now a variable but is set in each of K Gibbs samplers. We will
need a prior for K, which we will set to be a Uniform over the space of K, so it will cancel out of
all the equations. p(K|y) =

∫
p(K|y, λ)p(λ|y)dλ ≈ 1/M

∑M
j=1 p(K|y, λ(j)), where M is the number

of iterations in the Gibbs sampler for Kj . And p(K|y, λ(j)) ∝ p(y|λ(j)),K)p(K)
Basically this comes down to evaluating the likelihood at each step (obtained from the recursive
log-likelihood method.) We get the average likelihood over all runs for each K: 1/M

∑M
j=1 L(y|λK),

and then scale them to add to one because there is a finite number of models being compared.

• Posterior Predicted Quadratic Loss (PPQL)- this requires a loss function here were will use quadratic
loss. This method is based on the predicted values of y from every iteration.
mina(E[(a− ypred)2 + k(a− data)]) = k/(1 + k)(µpred − data)2 + σ2pred
where k is a constant that must be set, (several values of k are tried and we will display results
for k=10.) They are denoted PPQL1 and PPQL2; they use the two different methods of obtain-
ing ypred. The first method uses the stationary distribution and assumes all intervals are the same,
whereas, the second method uses the current z values to assign which distribution to draw ypred from.

• Posterior Predicted Linear Loss (PPLL) - this is the same as the quadratic loss but uses a linear loss
function instead.
mina(E[|a− ypred|+ k|a− data|]) = k/(1 + k)[2(µpred − data)]

The results of model comparison can be seen in Table 1 and the favored method is in bold. My BIC
values are bit higher than Scott (2002) because my log-likelihood is slightly different. But BIC is picking
the model with K=2 over the model with K=3, just like in Scott(2002). Using the table in Scott(2002) I
calculate the AIC to be 309.4 (K=2) and 299.4 (K=3) which means that K=3 model is favored. BIC and
AIC are typically both run on models for comparison reasons, since one is too liberal and one tends to be
too conservative. In this case the AIC and BIC do not agrees which means that there can be no strong
conclusion drawn from these methods. Scott(2002) makes the point that the posteriors are not Normal
enough for the BIC to work properly. It would be good to do some other model comparison tests.

I also ran the posterior model probabilities as specified in Scott(2002). I got different values than they did
but the same conclusion that K=3 model is chosen. Scott(2002) is averaging over many models and I am
only averaging over two models, which will account for a difference.

The posterior predicted quadratic loss and linear loss choice different models as well. The second method
of getting ypred chooses model K=3, I think this is the better way of obtaining predicted values based on
the information provided by the hidden z states. I think model K=3 is best, as Scott(2002) points out the
assumptions of the BIC are not valid here. Scott(2002) concludes from the Gibbs sampling method that
K=3 is best.
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Figure 2: K=2 Posterior Plots
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Figure 3: K=3 Posterior Plots
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Figure 4: K=2 Probability of z
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Figure 5: K=3 Probability of z
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Figure 6: Posterior Predictive - 95% PI-light blue, 68%PI-blue, mean-black, data-red
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Figure 7: Posterior Predictive — stationary probabilities method (black) and using z value method (red)
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