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1 Introduction

The goal of this project will be to explore density estimation and regression fitting with a Bayesian
non-parametric approach. This type of model will easily accommodate multimodal distributions
and lead to posterior predictive density plots over a grid, conditional plots, and regression type fits
and probability intervals. Two different covariate and response sets were chosen to display different
attributes of these types of plots and analysis that can be done under this model. The model will
be described and then an algorithm implemented using a Blocked Gibbs approach and advantages
of this method are discussed. The data here is a simple example but this approach can be extended
to many other more complex data structures that will not be discussed.

2 Density Model

We will use two data sets for our example both with n=111. This is a stock example from R: in
this analysis, however, Ozone will be transformed to Ozone

1
3 . We are looking at one covariate and

one response in two separate set ups both of which are continuous. The clustering is different for
these two set ups which will lead to interesting density, regression, and conditional density plots.

We would like to do density estimation over both data plots and also fit a regression type line
of E(y|x). We are assuming a non-parametric form is best for the density estimation because the
data plots show signs of multimodality and clustering and we wish our model to reflect this. A
non-parametric approach to regression will also be employed because we do not believe this to be
a linear relationship and do not want to specify a parametric form for our curve.
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(a) Radiation vs. Ozone
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Figure 1: Data

The model we will be:

(xi, yi)|µi,Σi ∼MVN((xi, yi)|µi,Σi) (1)
µi,Σi|G ∼ G, i = 1, ..., n (2)

G|... ∼ DP (α,G0 = MVN(µi|aµ, Bµ)IW (Σi|aΣ = 4, BΣ)) (3)
α,aµ, Bµ, BΣ ∼ π(α)π(aµ)π(Bµ)π(BΣ) (4)

The priors are:

π(α) ∼ Γ(shape = aα, rate = bα) (5)
π(aµ) ∼MVN(a1, B1) (6)
π(Bµ) ∼ IW (a3 = 4, B3) (7)
π(BΣ) ∼W (a4 = 4, B4) (8)

3 Blocked Gibbs Sampler

There are several ways to proceed with this model. One could use a standard Gibbs sampler but
there are issues with q0 = α

∫
MVN(yi|θ)MVN(θ|ψ)IW (θ|ψ)dθ not being analytically solvable in

this case. There are two obvious choices on how to handle q0 in this case: one could do numerical
integration of q0 or it could be approximated by q0 = α

∫
MVN(yi|θ)MVN(θ|ψ)dθ as like in

(Muller et al., 1996). Neither of these options is terribly satisfying as they are both approximate
solutions and thankfully there are better options. One of these other options includes marginalizing
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over G and using an algorithm like the ones presented in Neal 2000. This is a good option but
extra work is needed in the end to create regression curves. Instead, we will opt to use blocked
Gibbs sampler. This is based on stick-breaking with truncation the process at N instead of letting
it go to infinity. p = (p1, ..., pN ) and θi = (µi,Σi) and we will denote yi = (xi, yi). We start with:

yi|θi ∼MVN(yi|θi) (9)
θi|G ∼ G, i = 1, ..., n (10)

G|α,ψ ∼ DP (α,G0(ψ)) (11)

After doing the truncation at N; we use GN = (p,Z) in place of G with Z = (Z1, ..., ZN ).

yi|θi ∼ k(yi|θi) (12)
θi|p,Z ∼ GN , i = 1, ..., n (13)

p,Z|α,ψ ∼ f(p|a)
N∏
l=1

g0(Zl|ψ) (14)

α,ψ ∼ π(ψ)π(α) (15)

Other needed equations and facts for this stick-breaking construction:

Vl ∼ Beta(1, α), l = 1, ..., N − 1 (16)

p1 = V1, pl = Vl

l−1∏
r=1

(1− Vr)forl = 2, ..., N − 2, pN =
N−1∏
r=1

(1− Vr) (17)

f(p|α) = αN−1pα−1
N (1− p1)−1(1− (p1 + p2))−1 ∗ ... ∗ (1−

N−2∑
l=1

pl)−1 (18)

Next we marginalize over θi to come to the blocked Gibbs sampler set up.

yi|zi, Li ∼MVN(yi|ZLi) (19)

Li|p ∼
N∑
l=1

plδl(Li), i = 1, ..., n (20)

p|α ∼ f(p|a) (21)
Zl|ψ ∼ G0(.|ψ), l = 1, ..., N (22)
α,ψ ∼ π(ψ)π(α) (23)
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3.1 Notation

• n∗ is the number of clusters j = 1, ..., n∗

• Li (wi) is a vector of indexes corresponding to which cluster ZLj∗ (θ∗j ) belongs

• There are nj , ZLj∗ in each cluster

• There is one Zl for l = 1, ..., N

• Zl,(1,2,3) = (µ1, µ2,Σ)l

4 Posteriors

4.1 Update zl

Remembering that:
g0 = MVN(µi|aµ, Bµ)IW (Σi|aΣ = 4, BΣ)
p(Zl|...) ∼ g0(Zl|ψ)

∏n∗

j=1

∏
i:Li=L∗j

MVN(yi|ZLj∗ )

1. If l is not in {Lj∗ : j = 1, ...n∗} then we draw a new Zl,(1,2,3) from the prior (as a consolation
this prior is being update by its hyperparameters). Basically, if the current cluster has no data
currently assigned to it then we want redraw this cluster value from the prior.
Zl,(1,2)|Zl,(3) ∼MVN(aµ, Bµ)
Zl,3|Zl,(1,2) ∼ IW (aΣ, BΣ)

2. If l is in {Lj∗ : j = 1, ...n∗} then this cluster is being favored by the data. We do not want
to start over and draw the new parameter values from the prior but rather just want to update the
values slightly.

Zl,(1,2,3) ∼MVN(Zl,(1,2)|aµ, Bµ)IW (Zl,3|aΣ = 4, BΣ)
∏

i:Li=L∗j

MVN(yi|ZLj∗ ) (24)

Zl,(1,2)|Zl,(3) ∼MVN

(
(Bµ + njΣ−1)−1(B−1

µ aµ + Zl,3

Li∑
i=1

yi), (Bµ + njΣ−1)−1

)
(25)

Zl,3|Zl,(1,2) ∼ IW (aΣ + nj , BΣ + (yi − Zl,(1,2))
′(yi − Zl,(1,2))) (26)
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4.2 Update pl and Li

Ml = {i : Li = l} (27)

V ∗l ∼ Beta(1 +Ml, α+
N∑

r=l+1

Mr) (28)

p1 = V ∗1 , pl = V ∗l

l−1∏
r=1

(1− V ∗r )forl = 2, ..., N − 1, pN = 1−
N−1∑
l=1

pl (29)

Li = Discrete(plMVN(yi|Zl)) (30)

4.3 Update α

α|... ∝ Γ(aα, bα)αN−1pαN (31)
∼ Γ(N + aα − 1, bα − ln pN ) (32)

∼ Γ(N + aα − 1, bα −
N−1∑
r=1

ln(1− V ∗r )) (33)

4.4 Update hyperparameters

I am tired of typing so here are the posteriors.

p(aµ, Bµ, BΣ) ∝ π(aµ, Bµ, BΣ)
n∗∏
j=1

g0(ZLj∗ |aµ, Bµ, BΣ) (34)

p(aµ|...) ∼MVN
(

(B−1
1 + n∗B−1

µ )−1(B−1
1 a1 +B−1

µ

∑
Zl,(1,2))

−1, (B−1
1 + n∗B−1

µ )−1
)

(35)

p(Bµ|...) ∼ IW

a3 + n∗, B3 +
n∗∑
j=1

(Zl,(1,2) − aµ)′(Zl,(1,2) − aµ)

 (36)

p(BΣ|...) ∼W

a4 + n∗aΣ, (B−1
4 +

∑
j=1

n∗Z−1
l )−1

 (37)

5 Prior specification

α ∼ Γ(5, 1); I tried a few things and this worked well. We are using a MVN with m=2 dimensions
(x,y) so the Wishart and Inverse Wishart will have 2m=4 degrees of freedom, so aΣ, a3, a4 = 4. I
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will use the data to help with the priors on the hyperparameters. V(x) and V(y) can be equal to

the variances of the data or they can be the
(
Range(x)

2

)2
.

(E(x), E(y)) = a1 (38)
(V (x), V (y))I2 = E(V (z|µ,Σ)) + V (E(z|µ,Σ)) (39)

= E(Σ) + V (µ) (40)
= E(E(Σ|BΣ)) + V (E(µ|aµ, Bµ)) + E(V (µ|aµ, Bµ)) (41)

= E((aΣ − 2− 1)−1BΣ) + V (aµ) + E(Bµ) (42)

= (aΣ − 2− 1)−1a4B4 +B1 + (a3 − 2− 1)−1B3 (43)
= 4B4 +B1 +B3 (44)

The parameters having to do with the means will be set to the sample mean of the data. So, a1

will be set to the data mean. V(x) and V(y) will be placed in a diagonal 2x2 matrix called Vprior;
we can either use this matrix directly or can multiply it by 5 or 10 to have a more dispersed prior.
Overall, B4 = 4

6Vprior and B1 = 1
6Vprior and B3 = 1

6Vprior. Vprior can also be a diagonal matrix
based on the range of the data.
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6 Posterior Predictive

We will need L0 to draw a new y0:
p((x0, y0)|data) =

∫ ∫
MVN((x0, y0)|Z(L0), ...)(

∑N
l=1 plδl(L0))p(Z,p,L, α, ψ|data)dL0dZdLdpdψdα

Draw L0 from 1,...,N with probability, (p1, p2, ..., pN ) and draw (x0, y0)|L0 ∼MVN(Zl,(1,2)(L0), Zl,3(L0))

This will provide a set of (x0, y0) the same size as the data for every iteration. The following
figure is of one set of n=111 posterior predictive observations where the black points are the real
data and the red ones are the posterior predictive observations.
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Figure 2: Posterior Predictive
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Then we will look at posterior predictives over a grid of values. This grid will be size 50 by 50.
The density at a given point of the grid is:

∑N
l=1 pl ∗MVN(x0, y0|µl,Σl)

We will show a contour plot the mean density for all of the iterations. Conditional plots for fixed
values of x0 can be seen as well using these densities.
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Figure 3: Posterior Predictive Density
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We also want to examine some of the conditionals for some values of x. We can see clearly signs
of multimodality in the plot b). And we can see how this changes with different values of x.
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Figure 4: Conditional Posterior Predictive Densities
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7 Regression Curve

Lastly, we will observe what a regression type line, E(Y |X), through the data would look like
along with 95% probability intervals. The E(y|x) curve leads to a nice calculation of a mixture
of Normals with weights based on the stick breaking construction probability and the conditional
mean.

E(y|x;GN ) =
∫
yf(y|x0;GN )dy (45)

=
∫
y
f(y, x0;GN )
f(x0;GN )

dy (46)

=
1

f(x0;GN )

∫
y

N∑
l=1

plN(y, x0;GN )dy (47)

=
1

f(x0;GN )

∫
y

N∑
l=1

plN(y|x0)N(x0)dy (48)

=
1∑N

l=1 plN(x0|µxl ,Σx
l )

N∑
l=1

plN(x0|µxl ,Σx
l )
∫
yN(y|x0)dy (49)

=
1∑N

l=1 plN(x0|µxl ,Σx
l )

N∑
l=1

plN(x0|µxl ,Σx
l )E(y|x0) (50)

=
∑N

l=1 plN(x0|µxl ,Σx
l )(µyl + Σyx

l (Σx
l )−1(x0 − µxl ))∑N

l=1 plN(x0|µxl ,Σx
l )

(51)

These figures reflect 9000 runs on a 20 x 20 grid. Plot a) is a nice example of a non-parametric
fit. Plot b) is not as nice of an example but completely expected since there is no really relationship
in the direction we are plotting. A regression curve would make more sense with Radiation as the
covariance and Wind speed as the y for plot b).
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5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

Wind Speed

R
ad

ia
tio

n ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
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Figure 5: E(Y |X)
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8 Discussion

The goal was to perform density estimation using Bayesian non-parametric methods over a grid
and also fit a non-parametric regression type line. Overall, this Dirichlet Process model was chosen
because the non-parametric approach easily accommodates multimodal densities. This approach
results in posterior predictive plots over a grid of values and even the multimodal conditional plots.
A regression type line can be plotted with bands and also carries the non-parametric features of
being able to flexibly fit the data in a non-linear way. The drawbacks of this approach is that as
the posterior predictive grid grows or the number of covariate grows the algorithm quickly becomes
slow.

The block Gibbs algorithm was used here because it allows for easy transition to plotting pos-
terior predictives, as GN is known. The blocked Gibbs sampler has an added benefit of resampling
the cluster values at every step; so we did not need to add any extra steps to the algorithm to do
this. This set up employs only Gibbs steps and no Metropolis-Hasting steps, and therefore requires
little tuning. Overall, this method was chosen because the alternatives were either estimating G0

by numerical integration or by using a rough estimate of G0 to make it conjugate to use the typical
Gibbs sampler. These estimated approaches suggested by some authors were considered unfavor-
able. One other method considered was presented in Neal 2000, which marginalizes over G. This is
an acceptable method but we did not use it, as it can take a bit more work at the end to get some
of the plots that require G. The Blocked Gibbs sampler was rather straight-forward implement for
this model and easily produced some nice plots.

Other things to consider when using a non-parametric model is that it may be affected by the
amount, clustering or even the spread of the data. For non-parametric density estimation it is
especially important to have enough data. The priors, also, play a role in how the data is fit and
how much the prior will influence the results. We used a hierarchical model so there are priors on
the cluster mean and variance leading to the updating of these parameters to be more flexible. The
amount of dispersion of the prior can effect how the model is able to capture the data and we did
not want a prior that was too tight in the center of the data. We made sure to use rather disperse
priors to allow the model some flexibility in fitting the data; this included multiplying the variance
priors by a constant of 5 or 10. This helped ensure that we did not have a single hump prior right
in the center of the data.

As noted, some thought and care should be taken when setting N and also when putting a prior
on α; it drives n∗. In our model, we can visually see that there will only be a few clusters maybe
2 or 3; there is an adequate amount of data for so few clusters, n=111. We will most likely have
n∗ rather small and we know α will be rather small, as well. But by putting a prior on α instead
of just setting it at a single value, we allow it to have flexibility to explore the number of clusters
that may be in the data. It will be noted that we are not forgetting α’s other role in smoothing
G. Lastly, the choice of N was considered based on its relationship with α. We assume α will be
rather small and we use the typical formula ε = (α/(α+ 1))N . In practice, we tried several values
(10,20,30, and 40) but because the actually number of clusters is somewhere near two and thus α is
also small, all of these N values performed in a similarly acceptable fashion; this need not be true
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with any other data set, especially one with more multimodality.

9 Conclusion

This idea of density estimation and curve fitting is by no means limited to this simplistic example
with one covariate. The model can easily be extended to have multiple covariates. Other sim-
ilar models have been used to model continuous and discrete covariates, binary or multinomial
responses, or to do other interesting things like quantile regression. This modeling approach is
flexible and can fit a wide range of data types. The implementation of the Blocked Gibbs sampler
also has its benefits for these types of models. Here in our simple example we can see some of
the posterior predictive density plots and regression line with interval estimates for a one contin-
uous covariate and one continuous response. This model and method seemed to work well for our
multimodal density case and provides a flexible Bayesian non-parametric solution to our problem.
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