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Discrete-time hidden Markov models are a broadly useful class of latent-
variable models with applications in areas such as speech recognition, bioin-
formatics, and climate data analysis. It is common in practice to introduce
temporal nonhomogeneity into such models by making the transition prob-
abilities dependent on time-varying exogenous input variables via a multi-
nomial logistic parametrization. We extend such models to introduce ad-
ditional nonhomogeneity into the emission distribution using a generalized
linear model (GLM), with data augmentation for sampling-based inference.
However, the presence of the logistic function in the state transition model
significantly complicates parameter inference for the overall model, particu-
larly in a Bayesian context. To address this, we extend the recently-proposed
Pólya-Gamma data augmentation approach to handle nonhomogeneous hid-
den Markov models (NHMMs), allowing the development of an efficient
Markov chain Monte Carlo (MCMC) sampling scheme. We apply our model
and inference scheme to 30 years of daily rainfall in India, leading to a num-
ber of insights into rainfall-related phenomena in the region. Our proposed
approach allows for fully Bayesian analysis of relatively complex NHMMs
on a scale that was not possible with previous methods. Software implement-
ing the methods described in the paper is available via the R package NHMM.

1. Introduction. Consider the problem of modeling the dynamics of a mul-
tivariate discrete time series yt , with component measurements yts , s = 1, . . . , S,
and a discrete-time index t = 1, . . . , T . A useful modeling approach in this context
is the hidden Markov model (HMM), where the observed yt ’s are assumed to be
a stochastic function of a (hidden) finite-state Markov process z, with components
zt ∈ {1, . . . ,K}, and where each vector yt is assumed to be conditionally indepen-
dent of all other yt ′ vectors and state variables zt ′ , t ′ �= t , given state zt [Zucchini,
MacDonald and Langrock (2016)]. The conditional distribution of the yt vectors at
time t given the state zt is often assumed to be time homogeneous, defined by so-
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called emission distributions,2 f (yt |zt = k, θ), k ∈ {1, . . . ,K}, where θ represents
the emission distribution parameters. The distributional choice for f will depend
on the particular characteristics of the yt measurements for a given application.

HMMs are appealing for problems where the dynamics of yt are too com-
plex to be directly modeled (e.g., for high-dimensional problems where S is
large), but can instead be approximated via a discrete-state hidden Markov pro-
cess z. For example, a common assumption in practice [and one that is used in
this paper—see also Zucchini, MacDonald and Langrock (2016, page 140), and
the discussion of contemporaneous conditional independence] is to assume that
the components of yt are conditionally independent given the state, that is, that
f (yt |zt = k, θ) = ∏S

s=1 fs(yts |zt = k, θ), where fs(·) denotes the conditional dis-
tribution of component s of the observed vector yt . HMMs can also be used to pro-
duce a time-dependent clustering of the observations yt , where the state variables
zt are interpreted as indicators of cluster memberships, with the Markov depen-
dence providing temporal dependence (in contrast to mixture model clustering, for
example, where the cluster memberships are modeled as being independent). Us-
ing HMMs for clustering in this manner can be useful in econometric, ecological,
or other scientific time-series applications [e.g., MacDonald and Zucchini (1997),
Raphael (1999), Siepel and Haussler (2004), Mamon and Elliott (2007), Patterson
et al. (2016)]. The goal is often to try to gain insight into possible latent processes
that might be giving rise to the observed yt data, for example, by analyzing and
interpreting differences among the emission distributions f (yt |zt = k, θ) across
states.

The time homogeneity of the standard HMM (at the parameter level, as de-
scribed above) can be limiting in practice, for example, if yt has seasonal depen-
dence or is nonstationary. One approach to relaxing this assumption is to allow the
K ×K transition matrix probabilities to be dependent on an exogenous time-series
xt , resulting in a nonhomogeneous hidden Markov model (NHMM) [e.g., Hughes
and Guttorp (1994), Diebold and Lee (1994), Hughes, Guttorp and Charles (1999),
Kirshner, Smyth and Robertson (2004), Kim, Piger and Startz (2008), Paroli and
Spezia (2008), Meligkotsidou and Dellaportas (2011), Rajagopalan, Lall and Tar-
boton (1996)]. A natural parametrization is to model each of the K rows of the
transition matrix via a multinomial logistic function, with K possible outcomes
(the K possible states at time t + 1 given the current state zt ). Temporal inho-
mogeneity can also be introduced in the emission component of the model, for
example, by allowing the parameters of the emission distributions f (yt |zt = k, θ)

to vary with time t and location s as a function of another exogenous process wts

[e.g., Holsclaw et al. (2016)].

2Here we use the term “emission distributions,” widely used in speech recognition and language
modeling [e.g., Jurafsky and Martin (2014)]—these are also referred to as “state-dependent distribu-
tions” [e.g., Zucchini, MacDonald and Langrock (2016)].
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FIG. 1. Locations of the 63 rain gauge stations, showing the topography of South Asia. Stations 3
(31.63°N, 74.87°E), 40 (15.48°N, 73.82°E), and 52 (11.77°N, 79.77°E) are each marked with a dot;
these diverse locations will be used in subsequent plots as examples.

As a motivating example we consider the problem of modeling and simulating
daily station rainfall data over India where the observations yts correspond to the
amount of rain that has fallen on day t at weather station s. The data we analyze
has been collected daily for 30 years at 63 rain gauge stations across India, totaling
well over half a million observations (6.9× 105). The geographical area of interest
contains diverse subregions where the rainfall varies greatly in seasonal timing and
amount. As shown in Figure 1, some stations lie in the Himalayas, while others
are located variously in coastal, monsoon, or desert regions; these data are not
isotropic in nature. Figure 2 shows the rainy days in lighter shades, indicating
amounts and dry days in dark shades for three contrasting stations [see Holsclaw
et al. (2017) for additional stations].

FIG. 2. Daily rainfall data (log of the amount in mm) with the x-axis being the day of the year and
the y-axis depicting 30 years. The left panel shows the relatively dry, Station 3 located in NW India,
the middle panel shows Station 40 on the west coast, strongly impacted by the summer monsoon, and
the right panel shows Station 52 on the SW coast that is influenced by the winter monsoon, peaking
in October–December. Darker colors indicate lower daily log rainfall amounts, and lighter colors
indicate higher daily values; white is for missing observations.
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Accurately modeling and simulating rainfall on a daily timescale is important
across a number of diverse applications, such as crop modeling, flood risk assess-
ment, and water policy decisions [Hansen et al. (2006), Challinor et al. (2009),
Piani et al. (2010)]. Multivariate HMMs have been successfully applied to this
modeling problem in the past, where the hidden variables zt can be interpreted
as weather states exhibiting persistence at daily timescales, and the emission dis-
tributions f (yt |zt = k, θ) capture the spatial and distributional characteristics of
observed rainfall for each state [Zucchini and Guttorp (1991), Hughes and Guttorp
(1994), Kirshner (2010), Greene, Robertson and Kirshner (2008), Zucchini, Mac-
Donald and Langrock (2016)]. Of direct interest to climatologists is the situation
where the rainfall in a given region is being influenced or driven by time-varying
atmospheric variables xt such as pressure differentials at large spatial scales. Re-
lating these large-scale variables to local rainfall characteristics at particular station
locations s is known as downscaling. NHMMs have been found to be broadly use-
ful in this context where the xt variables act as “drivers” for the Markov transition
matrix as described earlier [Hughes, Guttorp and Charles (1999), Bellone, Hughes
and Guttorp (2000), Charles et al. (2004), Robertson (2009), Germain (2010),
Carey-Smith, Sansom and Thomson (2014), Heaps, Boys and Farrow (2015)].
Other work in a downscaling context, such as that of Berrocal, Gelfand and Hol-
land (2010) and Fuentes and Raftery (2005) for ozone and airborne particulates,
focuses on the use of Gaussian models—these models are not appropriate here
given the nonnegativity and nonnormality of precipitation data.

There are a multitude of other modeling approaches that could be used in this
context. In particular, dynamic spatio-temporal models provide a rich framework
for modeling spatial and temporal dependencies. These models often use contin-
uous latent-space representation (in contrast to the discrete state representation of
the HMM approach) and are often parametrized in a manner that can incorporate
relevant scientific knowledge, for example, in the form of differential equations
[see Hooten and Wikle (2010) for a review]. Such approaches can provide richer
representations for spatial structure that go beyond the conditional independence
assumption that has often been used when NHMMs are applied to precipitation
modeling (and that we use here in this paper). In Section 5.4 and in Holsclaw
et al. (2017) we examine the model’s ability to capture spatial dependence across
stations and conclude that while the conditional independence approach tends to
underestimate the true spatial dependence, that the model nonetheless is captur-
ing much of the dependence that is empirically observed. For applications where
spatial dependence is of critical importance, additional spatial dependence could
be incorporated in the emission component of our proposed model at the cost of
additional complexity and computational effort.

Many of the early applications of HMMs and NHMMs, to climate data as well
as to other problems, have relied on point estimates of model parameters, of-
ten using the Expectation-Maximization (EM) algorithm for parameter estimation
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[Dempster, Laird and Rubin (1977)]. There is, however, a growing need for effi-
cient Bayesian methods for assessing uncertainty in these types of models [e.g.,
Rydén (2008)]. For example, in the context of climate data, modeling the uncer-
tainty in rainfall amounts is important in both seasonal forecasting and climate
change downscaling applications [Maraun et al. (2010), Vermeulen et al. (2013)],
and Bayesian simulations are better suited to characterizing such uncertainty than
point-estimate approaches.

While there has been extensive development of Bayesian methods for HMMs
[Scott (2002), Frühwirth-Schnatter (2006), Rydén (2008), Patterson et al. (2016)],
there has been little work on Bayesian estimation of NHMMs. Prior work has typ-
ically focused on analysis of small univariate data sets due to the complexity and
computational expense of the Metropolis–Hastings MCMC schemes used for in-
ference [e.g., Filardo and Gordon (1998), Spezia et al. (2014)]. Meligkotsidou and
Dellaportas (2011) apply the Bayesian multinomial logit regression (MNL) latent
variable technique developed by Holmes and Held (2006a, 2006b) to the NHMM,
illustrating the approach using a relatively small univariate financial econometrics
data set with monthly observations over 38 years. For many applications, however,
we need methods that scale up efficiently to much larger data sets. The rainfall
data set we analyze later in the paper consists of a 63-dimensional time series with
T ≈ 30 × 365 = 10,950 observations per time series.

The development of an efficient Bayesian sampling scheme to handle logistic
transition matrices in NHMMs is a problem that has proven challenging in the past
because of the lack of conjugacy that arises due to the logistic functional form.
With scalability in mind, we adopt the Pólya-Gamma latent variable method pre-
viously used for sampling in a multinomial logistic (MNL) regression framework
[Polson, Scott and Windle (2013)] and extend it to the NHMM in this paper. We are
motivated by the results in Polson, Scott and Windle (2013) which showed that the
Pólya-Gamma latent variable method is significantly faster than alternative sam-
pling schemes such as those of Holmes and Held (2006a) and Frühwirth-Schnatter
and Frühwirth (2007). Furthermore, because the Pólya-Gamma method uses only
Gibbs sampling steps, this obviates the need for extensive parameter-tuning of the
sampling algorithm, leading to a significantly simpler implementation in software
compared to methods based on Metropolis–Hastings steps, for example. We have
implemented the algorithm proposed in this paper and made this model available
in the NHMM R package on the Comprehensive R Archive Network (CRAN).

The contributions of our paper are as follows. We propose a novel hidden
Markov model with inhomogeneity in both the transition and emission state-
dependent distributions. This model generalizes earlier NHMMs that contained
either transition or emission inhomogeneity but not both. An additional signifi-
cant contribution of the paper is the development of a fully Bayesian estimation
scheme for this class of models. In particular, we develop a scalable Bayesian sam-
pling scheme for the logistic transition component of the NHMM, enabling these
methods to be applied to much larger data sets than in prior work. Finally, we
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demonstrate the application of the model and the Bayesian inference algorithms to
a large-scale multi-decadal precipitation data set.

Section 2 lays out the proposed Bayesian multivariate NHMM. A description of
the Bayesian implementation of the MCMC algorithm and the handling of miss-
ing data, predictive simulations, and forecasting are discussed in Section 3; fur-
ther modeling considerations such as variable selection and model choice for the
NHMM are included in Appendix A. Local rainfall amounts for 63 stations in
and around India and the exogenous variables to be downscaled are described in
Section 4; specific details pertaining to the exogenous variables can be found in
Appendix B. Section 4 also provides a brief summary of rainfall modeling. Sec-
tion 5 includes the analysis and results of the NHMM when applied to the Indian
rainfall data. Our findings and general conclusions are summarized in Section 6.

2. Bayesian multivariate nonhomogeneous Markov model.

2.1. The NHMM and the likelihood. The observed multivariate time-series
yts, s = 1, . . . , S, with discrete-time index t = 1, . . . , T , is modeled using an
NHMM. A general way to introduce exogenous dependence into the transition
matrix is to allow each transition to have its own set of logistic coefficients (or
at least K − 1 of them, subject to identifiability), implying O(K2B) coefficients
in total for B exogenous variables. This was the approach taken in Meligkotsidou
and Dellaportas (2011) for K = 2. However, this model requires a large number of
parameters as K grows. A more parsimonious approach (and the one we follow in
this paper) is to have one set of regression coefficients for each state, with O(KB)

coefficients in total, allowing the probability of entering each state j to be modu-
lated by a set of K weighted regressors (via the logistic link), but where the mod-
ulation is independent of the previous state i [e.g., Kirshner, Smyth and Robertson
(2004)]. The intuitive interpretation is that the exogenous variables control how
likely the Markov chain is to enter each state j (via the logistic link and regres-
sion coefficients), and thus, as the exogenous variables change over time, so do the
probabilities of being in each state. As a simple example, if one of the exogenous
variables reflects seasonality (time of year), this allows the model to visit hidden
states in a seasonal fashion. The hidden process z is Markov with an inhomoge-
neous K × K transition matrix Qt with components qijt , where i, j ∈ {1, . . . ,K}.
The transition probability entries at time t are modeled via a multinomial logistic
link function:

(1) qijt = P(zt = j |zt−1 = i,xt , ζ ) = exp(ξij + x′
tρj )∑K

m=1 exp(ξim + x′
tρm)

,

where xt is a B-dimensional exogenous covariate time series, t = 1, . . . , T , and
ρj is a B-dimensional vector of coefficients corresponding to the B components
of xt = (x1t , . . . , xBt ). For notational convenience let ζ = ζij = (ρj , ξij ) for all
i, j ∈ {1, . . . ,K}. We assign one of the ζ ·j to zero for some value of j (one ρj and
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FIG. 3. Graphical model: The observed values (yts ,wts ,xt ) are in gray boxes. The unknown pa-
rameters (θ for the emission distribution and ζ for the transition probabilities) and hidden states (zt )
are circles. Qt (in double circles because they are directly calculated in contrast to sampled param-
eters) is a set of matrices that contain the transition probabilities arising from the Markov property
of the hidden states and the exogenous variables xt .

a vector of ξ ·j for some j ) for identifiability. The choice of the logistic function
above is discussed further in Section 3.1.

The other main component of an NHMM is the set of state-dependent emission
distributions f (yt |zt = k, θ), k = 1, . . . ,K , and where θ is the set of all parame-
ters of the emission distribution. Each combination of state (k) and station (s) has
its own emission distribution (for this particular application the emission distribu-
tion will be a zero-inflated mixture of exponential distributions). In general, these
distributions can be specified to be inhomogeneous over time by allowing the pa-
rameters to depend on time-varying exogenous variables wts , yielding f (yt |zt , θ).

Figure 3 shows a graphical representation of the multivariate NHMM and how
the two types of exogenous variables (xt , wts) impact the model. If the values of
the latent variables z are assumed to be known, the conditional likelihood for the
model above can be expressed as

(2) P(yt |x,w,z, ζ , θ) =
T∏

t=1

f (yt |zt ,w, θ)P (zt |zt−1,xt , ζ ),

where P(zt |zt−1,xt , ζ ) for t = 1 is defined via an initial state distribution P(z1)

and where the P(zt | . . .) transition probabilities are defined as in equation (1).
When the latent variables are unknown, the likelihood P(y|x,w, ζ , θ) can be com-
puted by marginalizing over the unknown z values in the usual recursive manner
for HMMs [e.g., see Scott (2002)]. Priors and inference procedures for the un-
known parameters ζ and θ are described in the next section.

3. Bayesian inference and MCMC algorithm. We describe below how to
perform inference in a Bayesian framework for the model in the preceding section
using a Markov chain Monte Carlo (MCMC) algorithm. Posterior full conditional
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distributions can be computed for each of z, ζ , and θ independently, such that
each step of the MCMC algorithm focuses on only one set of parameters at a time.
Our primary emphasis below is on the development of a sampling method for the
transition matrix parameters ζ since this has traditionally presented difficulties in
the context of Bayesian analysis of NHMMs and has effectively limited the sizes
of data sets that can be analyzed in past studies.

If the posterior full conditional distributions are known in closed form, then the
parameters can be sampled by Gibbs steps within the MCMC. For problems where
the posterior distributions are not conjugate, it is sometimes possible to have aux-
iliary variable methods facilitate rendering full posterior conditional distributions
in a form that can be sampled from. For the NHMM described above, two sets of
latent variables can be added to the model: one set for sampling the coefficients
ζ associating with the transition probabilities of the hidden states [Polson, Scott
and Windle (2013)] and another set associated with parameters θ of the emission
distributions [Albert and Chib (1993)]. Using auxiliary variables (and the result-
ing Gibbs sampling algorithm) in this manner can be more efficient compared to
alternative approaches such as Metropolis–Hastings, for example, leading in some
cases to better mixing (and thus less thinning and fewer iterations) as well as hav-
ing the advantage of not requiring tuning parameters for the sampler (i.e., which
results in a user friendly R Package).

3.1. Sampling the ζ k coefficients. In this NHMM, there are K −1 coefficients
(ζ ) associated with each of the B observed daily variables xt . These coefficient
parameters (ζ ) are related to the transition probabilities associated with the hid-
den states through a link function. There are two standard link functions that are
typically used in this context: the logistic multinomial (MNL) and the multino-
mial probit (MNP) [Riihimaki, Jylanki and Vehtari (2013), Neal (1997)], both
of which are commonly used in regression modeling of polychotomous response
variables. Although there has been relatively little literature on Bayesian infer-
ence with MNP or MNL link functions for NHMMs, Bayesian implementations
in the context of regression modeling are well studied [e.g., see Albert and Chib
(1993), Aitchison and Bennett (1970), Chib and Greenburg (1998), Imai and van
Dyk (2005), McCulloch, Polson and Rossi (2000), Johndrow, Lum and Dunson
(2013), Zhang, Boscardin and Belin (2008) for MNP regression and Holmes and
Held (2006a, 2006b) Scott (2011), Polson, Scott and Windle (2013), Frühwirth-
Schnatter (1994), O’Brien and Dunson (2004) for MNL regression]. Although
mathematically quite similar [Paap and Frances (2000)], MNL and MNP require
quite different Bayesian sampling algorithms. The Bayesian implementation of
the MNP regression model usually samples the coefficients using latent variables;
this is quite efficient and therefore works well for large data sets [Albert and Chib
(1993)]. However, unlike the regression case, the NHMM has the additional need
to calculate the transition probabilities for which there is no analytic solution in
the case of the MNP. For this reason the MNL has tended to be the link function
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of choice for NHMM modeling. But the Bayesian implementation of MNL tends
to be slow, requiring multiple tuning parameters and long sampling runs. For this
reason, it is often only used with relatively small data sets and small numbers of co-
efficients [Scott (2011), Frühwirth-Schnatter (1994), O’Brien and Dunson (2004)].
For example, Meligkotsidou and Dellaportas (2011) construct a Bayesian NHMM
inference procedure by drawing from the MNL regression method of Holmes and
Held (2006a, 2006b) using a relatively complex slice sampler to analyze a small
univariate time series.

Polson, Scott and Windle (2013) has recently introduced a new MNL method
using Pólya-Gamma latent variables, providing an algorithm that is more efficient
(both in terms of time per run and needing no tuning parameters), which opens up
the possibility of handling much larger data sets with these models. This provides
the motivation to apply the Polson, Scott and Windle (2013) Pólya-Gamma MNL
latent variable method to the NHMM. There are a number of aspects of the MNL
regression method that are altered in the extension to the NHMM case [refer to
Section 5 of Polson, Scott and Windle (2013) for details for sampling ζ of the
MNL regression]. In the NHMM, there is no observed multinomial data as in the
MNL regression. Instead, the sampled hidden states zt are set up in matrix form to
conform to the MNL regression method. Z is a T by K matrix with entries Ztk ,
where the columns contain the binary representation of the hidden states (a 1 in the
column of the zt and 0 elsewhere) and are updated during each of the iterations of
the MCMC sampler. The exogenous variables and the Markov dependence (from
zt−1 for t = 2, . . . , T ) are included in the matrix X which has dimension T by
K +B . The first K columns encode the information of the Markov property (zt−1)
in a binary form followed by B columns for the exogenous variables (xb,t for all b

and t). ζ is a K by K + B matrix of coefficients, indexed by where k = 1, . . . ,K

and h = 1, . . . ,K + B . One of the rows of ζ is set to zero for identifiability (the
first K by K entries are the ρ’s and the next B columns are the ξ ’s). The full
conditional posterior distribution for the ζkh’s allows them to be drawn conditioned
on the current draw of hidden states and other variables. The likelihood for ζkh is
given by

(3)

l(ζk,h|ζ−k,h) =
T∏

t=1

(
eηtkh

1 + eηtkh

)Ztk
(

eηtkh

1 + eηtkh

)1−Ztk

=
T∏

t=1

e(Ztk−1/2)ηtkhe−η2
tkh/2ωtkh PG(ωtkh|1,0),

where ηtkh = Xthζkh − Ctkh with Ctkh = log
∑

i �=k expXthζih (which is needed
for the multinomial logistic form). ω is a set of latent variables with components
ωtkh. At each time step there is only one observation of the hidden state, and so
in terms of the MNL regression the observation count is one. The full conditional
posteriors are given by

ζkh|�kh ∼ N(mkh,Vkh) and ωtkh|ζkh ∼ PG(1, ηtkh),
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where scalars Vkh = (X′
h�khXh + b−1

kh )−1 and mkh = Vkh(X
′
h((Zk − 1/2) −

�khCkh) + b−1
kh akh). �kh is a T by T diagonal matrix containing ωkh along the

diagonal. akh and bkh are parameters of the conjugate prior; the implementation
in our R package allows for a conjugate prior of the form ζ kh ∼ N(akh, bkh). If a
noninformative prior is desirable, then we can let akh and b−1

kh be zero as we do in
our rainfall example later in the paper.

The transition matrix is a necessary part of the NHMM not typically used in
MNL/MNP regression. Once the coefficients (ζ ) are sampled, then the transition
probabilities can be easily obtained through the logistic relationship given in equa-
tion (1). This leads to a K by K transition matrix for time t :

Qt =

⎡
⎢⎢⎢⎣

q11t q12t . . . q1Kt

q21t q22t . . . q2Kt

...
...

...

qK1t qK2t . . . qKKt

⎤
⎥⎥⎥⎦ ,

where each row of Qt sums to one.

3.2. Sampling the hidden states, conditioned on parameters ζ and θ . Condi-
tioned on sampled values of the parameters ζ and θ , and given the observed data
y,x, and w, the posterior full conditional distribution of the hidden state zn

t at
the nth sampling iteration is as follows (dropping the third subscript t from the q

variables for clarity):

zn
t |ζ , θ, · · · ∼ Multi

( qzn
t−1,1

q1,zn−1
t+1

f1(·)∑K
k=1 qzn

t−1,k
q
k,zn−1

t+1
fk(·)

, . . . ,
qzn

t−1,K
q
K,zn−1

t+1
fK(·)

∑K
k=1 qzn

t−1,k
q
k,zn−1

t+1
fk(·)

)
,

where fzt (·) = f (yt |zt = k, θ) is the emission distribution for state k = 1, . . . ,K .
Each of the zt are sampled in succession for all t = 2, . . . , T at each of the n =
1, . . . ,N iterations of the larger MCMC algorithm. Without loss of generality, we
assign the first hidden state, associated with day one of the time series, to state one:
Pr(zt=1 = 1) = 1.

We can sample the hidden states z using well-known efficient recursive tech-
niques. For example, Scott (2002) describes two Bayesian algorithms for sampling
the hidden state of an HMM: a forward-backward (FB) recursive algorithm and a
direct Gibbs (DG) sampler. The FB method mixes more rapidly but takes more
computational effort. We use the DG method, which can require more iterations
(for better mixing) but is less expensive per iteration.

Finite mixture models, including NHMMs, can suffer from the issue of noniden-
tifiability of the hidden states [Jasra, Holmes and Stephens (2005), Spezia (2009)].
Any pair of states could swap labels and the likelihood would remain invariant,
leading to identical marginal posterior densities; see Frühwirth-Schnatter (2006)
for a full discussion. Both Scott (2002) and Meligkotsidou and Dellaportas (2011)
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discuss this issue for similar HMM and NHMM models, respectively. However,
NHMMs are less likely to suffer from label switching compared to HMMs or fi-
nite mixtures due to the dependence of the latent states on fixed covariates, which
effectively makes label-switching less likely for the states. In particular, for the
model we propose in this paper, both the state transitions and the emission distri-
bution parameters are dependent on fixed covariate time series. In our experimental
results with rainfall data (described in Section 5) we did not see any evidence of
label switching.

3.3. Sampling for the emission distribution parameters. For this application
we model daily rainfall amounts by a zero-inflated mixture of two exponential dis-
tributions, an approach that has been found most effective in past work [Woolhiser
and Roldan (1982), Wilks (1998, 1999a, 1999b), Ailliot et al. (2015)]. Other possi-
ble modeling options include zero-inflated Gamma distributions or mixtures of ex-
ponential, Normal, or Poisson distributions [Hay et al. (1991), Hughes and Guttorp
(1994), Charles, Bates and Hughes (1999), Bellone, Hughes and Guttorp (2000),
Holsclaw et al. (2016)]. The zero-inflated mixture of two exponential distributions
has a physical interpretation of its three components corresponding to no rain, light
rain, and heavy rain. The delta function at zero (δ0) allows for zero inflation for
additional dry days, and the light rain and heavy rain each have an exponential
distribution, where

(4) yts |zt , θ ∼ p0tsδ0 + p1ts Exp(λ1zt s) + p2ts Exp(λ2zt s),

where zt = k and for this application θ denotes the mixing probability parame-
ters and rate parameters of the emission distributions. The mixing probabilities
p = (p0ts , p1ts , p2ts) are assumed to be dependent on the A exogenous variables
wts = (w1ts , . . . ,wAts) and are modeled by a generalized linear model (GLM)
through a probit link: pts = g−1(β0zt s + w′·tsβ1·s) for all a; β0zt s provides the
dependence on the K hidden states, with zt = k and watsβ1as as the mean. Let
β = (β0zt s, β1as) for t ∈ T , a ∈ A, and s ∈ S; let θ = (λ,β) denote the parameters
of the emission distributions. The β0zt s are state dependent and function like a ran-
dom effect, whereas the β1as are not state dependent, thus allowing significance
testing of the exogenous variable per station.

The probit link for ordered multinomial categories allows for the sampling of the
coefficients to be done through the standard Bayesian data augmentation approach
[Cox (1970), McCullagh and Nelder (1989), Albert and Chib (1993)]. To allow for
conjugate full conditional posterior distributions of the parameters of β , we need
to introduce two sets of latent variables (L and M). The first set of latent variables
L (with components Lts taking values in the set {0,1,2}) facilitates calculations
of p. The emission distribution becomes

yts | . . . ∼ p0tsδ0 + p1ts Exp(λ1zt s) + p2ts Exp(λ2zt s)

∼ [δ0ILts=0][Exp(λ1zt s)ILts=1
][

Exp(λ2zt s)ILts=2
]
,



404 HOLSCLAW, GREENE, ROBERTSON AND SMYTH

where zt = k. A second set of latent variables M with components Mts ∼
N(β0zt s + w′·tsβ1·s,1) is introduced to enable Gibbs sampling of β . The latent
variables L are three ordered categories (no rain, light rain, and heavy rain) which,
following the ordered multinomial probit algorithm in Albert and Chib (1993), re-
quire one fixed break point (set to zero) and one unknown break point (γ ) (more
categories would require more unknown breakpoints). The relationship between L

and M is as follows:

Lts =

⎧⎪⎪⎨
⎪⎪⎩

0, Mts < 0,

1, 0 < Mts < γ,

2, γ < Mts.

This results in posterior full conditional distributions as described in Holsclaw
et al. (2016). For our rainfall modeling application the λ1ks and λ2ks parameters
are each given a low-weight conjugate prior [
(1,1)] [label switching does not
occur because of the ordered nature of the latent variable method of Albert and
Chib (1993)]. The β coefficients have noninformative priors as well [Albert and
Chib (1993)]. This setup leads to the parameters θ = (λ,β) having closed-form
full conditional posterior distributions that can be sampled via Gibbs steps in the
MCMC algorithm.

3.4. Missing data imputation. The missing data points can be treated as un-
known random variables whose posterior distributions are inferred along with the
other variables in the model. The posterior conditional distribution of each miss-
ing data point (yo

ts at time t and station s) is given by yo
t |zo

t , . . . ∼ f (θo
zo
t
,wt ). Data

that is missing at random from the observed time series can be imputed as part of
the MCMC algorithm. yo

ts can be drawn at each iteration of the MCMC from this
distribution, where θo

zo
t

and zo
t are also draws from their posterior full conditional

distributions.

3.5. Predictive conditional chains and forecasting. New time series of length
T can be simulated conditioned on the x and w inputs. In this paper we simulate
these forecast chains conditioned on the exogenous variables for held-out years
of inputs. First, the exogenous variables x and the sampled coefficients (ζ o) are
used to generate the transition probabilities (q∗), and then chains of the hidden
states (z∗) are simulated. Unlike the scheme for imputing missing data described
in Section 3.4, the predictive conditional chains require a predictive draw from the
hidden states (z∗). Because of the autoregressive nature of the states (the Markov
property of the NHMM), the conditional predictive chains can be generated one
day at a time, dependent on the previous day. The exogenous variables w, their
sampled coefficients (θo), and the newly generated chains of hidden states are then
used to simulate from the emission distribution (y∗

r ). For a new time step r , this
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process can be expressed as

q∗
ijr |Xr , ζ

o = g−1(
X′

rζ
o)

z∗
r |q∗

z∗
r−1jr ∼ Multi

(
q∗
z∗
r−11r , . . . , q

∗
z∗
r−1Kr

)

y∗
r |zr , . . . ∼ fk

(
θo

z∗
r
,wr

)
,

where z∗
r = k and q∗

ijr , z∗
r , and y∗

r are new predictive draws at time r .
Specifically, we use the first 27 years of data (1981–2007) to fit the model, and

then generate predictive conditional chains for 2008–2010. These chains can then
be compared to three years of held-out observed y data for the purposes of model
selection and distributional checks [see Section 6 and also Holsclaw et al. (2017)
for plots].

4. Analysis of daily rainfall in India. India has a large population that relies
heavily on annual monsoonal rainfall patterns. Variations in rainfall occurrence and
amounts can lead to floods and droughts with significant major impacts on food
production, hydroelectricity production, and human safety. These variations can be
better understood by studying the interactions of daily rainfall with large-scale and
regional exogenous weather variables [Wilks and Wilby (1999), Immerzeel, van
Beek and Bierkens (2010), Hansen et al. (2006)]. The daily timescale for rainfall
modeling is of particular interest because of the effect of flooding, dry spell length,
and soil moisture content on agriculture and food supply [Stern and Coe (1984)].

4.1. Rainfall data. The rainfall data used in this paper (as briefly described
earlier in Section 1) corresponds to daily rainfall amounts3 between the years of
1981–2010 for a diverse set of 63 weather stations in the Indian region (Figure 1).
Stations were selected for inclusion in the data set if no more than 10% of the
days for that station had missing observations. This resulted in a total of 689,850
observations over the 30-year period [with leap days removed as in Furrer and
Katz (2007)], with 63 daily rainfall time-series yts ,1 ≤ s ≤ 63,1 ≤ t ≤ 10,950.

Figure 4 shows a plot of the seasonal cycle, where each line represents one of
the 63 stations, illustrating the diversity of rainfall and its seasonality across the
stations. Some stations have strong summer monsoonal maxima, while others are
much dryer, and some peak toward the end of the calendar year.

4.2. Covariate climate indices. The roles that remote climate “drivers” play
in Indian rainfall variability are not fully understood, especially at regional scales,
and the potential for prediction remains a topic of active research [e.g., Moron,
Robertson and Ghil (2012)]. In this context, we chose six established climate

3Data obtained from the U.S. National Centers for Environmental Prediction (NCEP) Climate
Prediction Center (CPC) Global Summary of the Day (GSOD) Observations.
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FIG. 4. Monthly rainfall (mm) averaged over all years, one line for each of the 63 stations. Stations
3, 40, and 52 are highlighted with bold lines. See also Figures 1 and 2 for context.

indices for our model as exogenous variables. All have been shown in previous
studies to be associated with rainfall variability over India on different timescales.
The variables are Westerly wind Shear Index (WSI), El Niño/Southern Oscilla-
tion (ENSO), Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO),
and two components of the boreal summer intraseasonal oscillation (BSISO1 and
BSISO2). The WSI encodes year-to-year (interannual) changes in the strength of
the summer monsoon winds which are closely related with interannual variations
in the monsoon rainfall [Wang and Fan (1999), Greene et al. (2011)]. ENSO and
IOD are known influences on rainfall on interannual timescales [Gadgil (2003)],
whereas PDO has a less well-understood impact [Joseph et al. (2013)]. The mon-
soon tends to be stronger during the La Nina phase when this ENSO index is
negative [Gadgil (2003)] and when IOD is positive [Gadgil (2003)]. These afore-
mentioned three variables are closely related to monthly SST. On sub-seasonal
timescales Indian monsoon rainfall is impacted by the boreal summer intrasea-
sonal oscillation (BSISO) for which we use the two indices BSISO1 and BSISO2
defined by Lee et al. (2013). Figure 5 shows the six input time series for the years
2008–2010. For a more detailed explanation of each of these variables see Ap-
pendix B.

Understanding of these exogenous variables has been hindered by longer
timescale nonstationarity, possibly associated with anthropogenic climate change,
or the remote impacts of other ocean basins [Gershunov, Schneider and Barnet
(2001)]. Our approach is thus to include all six indices as candidate covariates,
where BSISO is given as daily values and the monthly series (ENSO, WSI, IOD,
PDO) are interpolated linearly to daily values.

In our model, there are two ways exogenous variables can be included: a
station-level A-dimensional time series w with components wats or a global B-
dimensional time-series x with components xbt . The station-dependent variables
(w) are local in nature and directly influence the mixing weights of the point mass
at zero and mixture of exponential distributions of the emission distribution for
each station individually. Lower frequency climatic drivers tend to impact the cli-
matic background, and we thus introduce the impacts of the WSI, ENSO, IOD, and
PDO climate drivers via w, directly influencing the characteristics of the emission
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FIG. 5. Exogenous variables: ENSO, WSI, IOD, PDO, BSISO1, and BSISO2 for three years. ENSO,
WSI, IOD, and PDO are calculated by linearly interpolating monthly values to the daily timescale.
BSISO1 and BSISO2 are available on a daily basis.

distributions. In addition, a station-specific seasonal cycle (annual and biannual
harmonic terms—four total terms) and a long-term drift term are included in w.

In contrast, the large-scale time-dependent exogenous variables (x) are not
station-specific—they affect the whole region and influence the transition prob-
abilities of the hidden states of the NHMM. Indian monsoon rainfall is mostly
generated by local scale thunderstorm activity and monsoon depressions, while
mid-latitude western disturbances are important over northern India, especially in
winter. On sub-seasonal timescales the paths and intensities of these phenomena
are controlled by large-scale atmospheric circulation patterns that can be naturally
represented by a discrete set of weather states and the transitions between them
[Ghil and Robertson (2002)]. These are modulated by the BSISO whose impacts
are thus encoded in the model via the x variable influencing the transition matrix.
Additionally, a general seasonal cycle is included for the state transitions in x,
which also has terms to fit annual and biannual harmonics due to seasonal cycles
(i.e., there are a total of four sine and cosine terms in x).

5. Results. In this section we assess the model’s ability to capture distribu-
tional, temporal, and other aspects of rainfall, as well as investigating the effects
of the exogenous climate variables through information gained from the parameter
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uncertainty estimates. After fitting the model using 27 years of daily data (1981–
2007), we simulated 1000 chains of length 27 years for the 63-station network,
conditioned on the corresponding 27 years of exogenous variables w and x, to
produce the figures in this section. The last 3 years (2008–2010) of observed data
(w, x, and y) were held out. These 3 years of held-out data were used for model
selection (Appendix A) and also to compare with predictive conditional chains
[with plots shown in Holsclaw et al. (2017)]. For model selection, we use a com-
bination of the Bayesian Information Criteria (BIC) and predictive log-probability
scores (PLS) for selecting the number of hidden states and selecting among dif-
ferent combinations of exogenous variables. All of the results in the remainder of
the paper are for the selected model with K = 7 states which was used to generate
1000 simulated chains of 27 years of data.

5.1. Hidden states. From the MCMC algorithm, we sample the hidden states
(z) and marginalize over the iterations of the algorithm to find the most probable
hidden state for each day (similar to a Viterbi sequence [Forney (1973)]). Figure 6
shows the mean daily rainfall amount at each station for each of the hidden states.
The top of each pane indicates the number of days assigned to each state given the
most probable state sequence (there are a total of 27 × 365 = 9855 days). State 1
represents largely dry days across the whole domain (some stations have little to no
rainfall and have no dot), with moderate rainfall occurring in states 2 and 3. State 5
characterizes heavier rainfall over north-central India. The heaviest rainfall occurs
along the western coasts in states 6 and 7, while state 4 is unique in representing
rainfall over the southeast coast.

Figure 7 shows attributes of the daily sequences of states. The left panel shows
year-long chains of most probable state sequences for each year of the data set,

FIG. 6. Mean daily rainfall amount for each of the hidden states, given by circle size.
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FIG. 7. Most probable sequence of hidden states (left), together with the annual averages of number
of days per state (middle), and averages across years for each calendar day (right).

illustrating the dramatic seasonality of the summer monsoon together with a large
amount of sub-seasonal and interannual variability with a stochastic character. The
middle panel sums along the rows to depict variability in the annual counts of each
state. The right panel sums by column to depict the seasonality and has the counts
of each state per day of the year given that we observed 27 years; January 1st is on
the left and December 31st is on the right. The state occurrence frequencies can be
seen to follow distinct seasonal patterns.

The temporal distributions of each state can be naturally understood in terms of
the rainfall climatology of India by referring to their temporal evolutions, shown
in Figure 7. The wetter states occur more frequently during the summer monsoon
season, while state 4 is characteristic of the winter monsoon over SE India, peaking
in boreal autumn (right pane of Figure 7).

5.2. Rainfall simulations. In this section, we show both the seasonality and
distribution of rainfall for the average across all stations as well as for three spe-
cific and diverse stations. While it is straightforward to capture the seasonality
and rainfall distribution at a single station, doing it jointly across multiple stations
is nontrivial [Charles, Bates and Hughes (1999), Bellone, Hughes and Guttorp
(2000)]. The NHMM approach provides a useful mechanism for addressing this
joint modeling problem by conditioning the stations on common shared state vari-
ables. The figures below are for the chains simulated on the first 27 years of data;
see Holsclaw et al. (2017) for similar plots for the 3 held-out years of data.4

5.2.1. Seasonality. Figure 8 provides an indication of how well the model cap-
tures seasonality. The observed average rainfall per day over 27 years is shown by
the black points in the figure, and the NHMM simulations correspond to the 95%
probability interval (PI) bands in gray for the 1000 simulated sets. Figure 8(a)

4Holsclaw et al. (2017) also includes distributional plots showing the NHMM’s ability to capture
dry spell and wet spell lengths, inter-annual variability of mean rainfall, dry days, and heavy rainfall
events.
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(a) Rainfall (b) Station 3: Rainfall

(c) Station 40: Rainfall (d) Station 52: Rainfall

FIG. 8. Observed data averaged over 27 years (black) and 1000 simulated sets and their 95% PI
bands (gray). (a) Rainfall averaged over all stations, (b) Station 3 (dry), (c) Station 40 (wet summer),
and (d) Station 52 (wet winter).

shows that the seasonality of the simulated data from the model is similar to the
observed data averaged over all stations. Figures 8(b), 8(c), and 8(d) show the same
seasonal plots for rainfall but for the three contrasting Stations 3, 40, and 52. The
seasonality of the simulated data is similar to the observed data, when averaged
over all stations, as well as for the three individual stations with diverse clima-
tologies. [Holsclaw et al. (2017) includes similar figures for all of the individual
stations.]

5.2.2. Distributional checks. Also of interest is the NHMM’s ability in captur-
ing the large-scale distributional properties of the observed rainfall data. Figure 9
shows the observed 27 years of data in the gray histogram and the 95% PI bands
for the simulated chains (densities are plotted on a logarithmic scale). Figure 9(a)
is averaged over all stations; Figure 9(b), 9(c), and 9(d) show the data density for
the same dry and wet stations as in Figure 8. These plots show that the distribution
of the observed data is reasonably well represented by the model [see Holsclaw
et al. (2017) for results pertaining to the dry spells for more details on the dry days
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(a) All Stations Rainfall] (b) Station 3 Rainfall

(c) Station 40 Rainfall (d) Station 52 Rainfall

FIG. 9. Observed data density on the log scale (gray) and 1000 simulated chains for 27 years
given by the 95% PI bands. (a) Rainfall averaged over all stations, (b) Station 3 which is drier,
(c) Station 40 which is wetter in summer, and (d) Station 52 which is wetter in winter.

distribution]. Each of the diverse stations are well modeled, from wetter to drier
locations.

5.3. Model diagnostics of climate controls. As described in Section 4.2, sev-
eral covariates are included in the model. The BSISO1 and BSISO2 variables in the
x vector impact the hidden state evolution on the daily timescale, and the ENSO,
WSI, IOD, drift, and PDO in the w vector impact the mixing weights of the emis-
sion distributions on the monthly scale. There are K − 1 coefficients for the tran-
sition probabilities and J coefficients for the emission distributions (one for each
station). Figures 10 and 11 show the inferred values of the coefficients for the
exogenous variables x and w, respectively, and their 95% PIs [for the last 4000
draws from the posterior to ensure full convergence had happened, see Holsclaw
et al. (2017) for trace plots]; they are considered to be statistically significant if the
PIs do not contain zero (vertical dashed line). The Bayesian approach has made
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FIG. 10. Coefficients for the exogenous variables x influencing the transition probabilities for each
of K − 1 states. There is one dot for each of the K − 1 states (the kth state is set to zero). The 95%
PI bands are given as a line around each dot.

this type of significance testing of the exogenous variables possible; many other
NHMM algorithms only find point estimates for parameters of interest.

Figure 10 shows the coefficients for the exogenous variables of x, which affect
the transition probabilities of the hidden state evolution. Of the K − 1 coefficients
for each exogenous variable, at least one is well away from zero in each set. In the
case of BSISO2, all the coefficients are statistically significant, as their 95% PIs do
not contain zero. The four seasonal harmonic input coefficients are not shown, but
were also all significant. Figure 11 shows the coefficients for the exogenous vari-
ables (w) for the emission distribution, one for each of the 63 stations (Station 1 at
the bottom of the figure through Station 63 at the top). The harmonic terms repre-
senting rainfall seasonality are highly significant for most stations, consistent with
Figure 4. Most of the other exogenous variables are significant at least at several
stations, although their impacts are understandably much weaker than the seasonal

FIG. 11. Coefficients for the exogenous variables w influencing the emission distributions for each
of J stations, with Station 1 at the bottom through Station 63 at the top. The 95% PI bands are given
as a line around each dot.
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FIG. 12. Coefficients for the exogenous variables w influencing the emission distributions for each
of J stations. 95% PI for the coefficients having positive values (dark) and negative values (light)
(coefficients containing zeros omitted); the magnitude of the coefficient is given by the relative size.

modulation. Figure 12 shows the mean of the coefficient values for the climate co-
variates, plotted geographically to highlight any spatial coherency and regionality
in the relationships (note that the coefficient magnitudes depend on the scale of
the covariate and are thus not comparable between panels). There is some indi-
cation that certain subregions are affected preferentially by particular exogenous
variables, with the circulation index WSI showing the broadest scale impact. This
is consistent with the direct physical relationship between monsoon rainfall and
winds, while the remote climate modes (ENSO, IOD, PDO) have weaker impacts
[Gadgil (2003)].

Figure 13 shows mean rainfall amount over 1000 simulated chains versus day
of the year, for the minimum (light) and maximum value (dark) of each of the
exogenous variables (with all other inputs held at their mean values). The figure
shows little difference in mean rainfall for the minimum and maximum values of
the ENSO, PDO, and IOD covariates when averaged over all stations. However,
there is a marked difference in the minimum and maximum WSI value on the av-
erage rainfall amount, consistent with the broad scale geographical impact seen in
Figure 12. There is a slightly longer and heavier monsoon when the drift term is
higher, indicating an upward trend in rainfall over the 27-year period. BSISO1 and
BSISO2 amplitudes are the only inputs prescribed on a daily basis (whereas the
other inputs are monthly). Smaller BSISO1 amplitudes are seen to be associated
with longer and heavier monsoon seasons, while smaller BSISO2 amplitudes are
associated with heavier monsoon seasons but of the same duration. Thus, the mon-
soon tends to be stronger when the intraseasonal oscillation is less active, which is
physically consistent with fewer dry monsoon “breaks” in those years.

Figure 14 shows similar 1000-chain averaged annual simulations as Figure 13,
but for the three selected stations. Years with strong monsoonal wind shear anoma-
lies (WSI) are associated with a much longer summer monsoon rainfall season at
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FIG. 13. Maximum (dark) and minimum (light) for ENSO, WSI, IOD, drift, PDO, BSISO1, and
BSISO2 for each day of the year versus mean rainfall over 1000 simulated chains averaged over all
stations [see Holsclaw et al. (2017) for individual stations].

the very wet station (Station 40) on the west coast, while the impact is on peak
rainfall at the “dry” station in NW India (Station 3), not duration of the season.
The SE India station (Station 52), while nominally in the fetch of the NE monsoon
that peaks in autumn, nonetheless also feels the summer SW monsoon as well
when the monsoonal circulation (given by WSI) is strong, resulting in an extended

(a) Station 3

(b) Station 40

(c) Station 52

FIG. 14. Three specific stations: maximum (dark) and minimum (light) for ENSO, WSI, IOD, and
PDO for each day of the year versus mean rainfall over 1000 simulated chains.
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rainfall season from May–Jan. The indirect climate covariates again have smaller
impacts, though they can be quite large at the individual stations. Their impacts are
large during summer at Station 3 over inland NW India, although physical inter-
pretation is not straightforward. [See Holsclaw et al. (2017) for additional stations
and exogenous variable plots.]

5.4. Spatial modeling. Finally, we assess the model’s ability to reproduce the
observed spatial correlations of the rainfall patterns. Stations that are closer to-
gether tend naturally to have more highly correlated measurements, although this
can be modulated somewhat by local topography. The two-way station correlations
of daily rainfall, for amount and occurrence, range between (0.04, 0.41) and (0.04,
0.77), respectively. We use two measures of spatial correlation between each pair
of stations, the log odds ratio for occurrence and the Spearman’s rank correlation
coefficient for rainfall amount. The log odds ratio is calculated for the occurrence
(binary classification) as the log of the number of matched days between the two
chains divided by the number of differences [Hughes, Guttorp and Charles (1999)].

We compare the observed empirical pairwise correlations to correlations ob-
tained from the 1000 simulated chains of daily rainfall of the same length (each 27
years in length) in Figure 15. The x-axis corresponds to the observed correlations
and the y-axis to the simulated correlations. 95% PI bands are included for the sim-
ulations. If the model were able to fully reflect the observed spatial correlations,
then the points in the figure should lie around the diagonal line. The upper panel
shows that the spatial correlations tend to be systematically underestimated by
the NHMM, which is a known issue in rainfall modeling when assuming that the
station variables are conditionally independent given the state variable [Hughes,
Guttorp and Charles (1999), Kirshner (2010), Germain (2010)]. For comparison,
the spatial correlations from an equivalent GLM model (with no state structure,
which includes the w variables, but not x variables, as described in Appendix A
as Model 3) are shown in the lower panel. The simulated GLM correlations are
less accurate than those of the NHMM, indicating that the state variables are con-
tributing to better modeling of spatial dependence. Further improvements could
be made by going beyond the conditional independence assumptions within each
state, for example, by using the type of tree-structured station dependence devel-
oped in Kirshner, Smyth and Robertson (2004). [See Holsclaw et al. (2017) for
similar plots for the three held-out years of data.] For more analysis of isotropy
and correlation see Holsclaw et al. (2017); these plots show that the NHMM is
capturing most of the correlation from the data. Future work could include adding
more complex spatial structure to the model, but this would have to consider the
computational cost as some changes would be prohibitive.

6. Conclusion. We described a Bayesian implementation of the NHMM
based on the Pólya-Gamma latent variable scheme, allowing for analysis of larger
multivariate data sets than possible with prior approaches. The model allows for
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(a) NHMM: Rainfall amount (b) NHMM: Rainfall occurrence

(c) GLM: Rainfall amount GLM: Rainfall occurrence

FIG. 15. Pairwise station spatial correlation for the observed (x-axis) and the 1000 simulated
chains (y-axis). The dot is the mean of the 1000 simulated chains, and 95% PI bands are in gray.
Top: NHMM with state structure. Bottom: GLM model with no state structure.

exogenous variables to influence both the transition probabilities of the hidden
states and the emission distributions. The overall approach is flexible in that it can
handle nonnormally distributed multiple time series of daily data such as rainfall.
Sampling is done through a data augmentation approach which removes the need
for tuning parameters and makes it nearly automatic.

We illustrated how the framework allows fitting a multivariate NHMM for daily
rainfall simulation allowing for incorporation of covariate information of differ-
ent forms, which is particularly attractive for downscaling of global climate model
predictions and projections. In particular, we applied the approach to modeling of
rainfall data over a large historical collection of daily weather station data across
the Indian region. The general distributional properties of Indian rainfall, including
seasonality, were shown to be well captured by the model, and spatial correlations
between stations were adequately captured by the hidden states. The model was
shown to provide particular meteorological insight into the roles of monsoon wind
shear strength and intraseasonal wave activity on the seasonality of rainfall in the
Indian region. In particular, it enables a novel analysis of rainfall variability inte-
grated from daily-to-seasonal timescales and from local-to-subcontinental spatial
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scales. This complements the methods traditionally used in monsoon diagnostic
and predictability studies that often focus on correlation analysis between variables
for a particular spatio-temporal scale, such as the predictability of seasonal aver-
ages of all India rainfall, for example [Shukla and Paolino (1983)]. More broadly,
the Bayesian framework provides uncertainty estimates for all parameters of the
model, allowing for assessment of the impact of each exogenous climate variable.
The NHMM can be used to generate predictive chains and chains with different
levels of the exogenous variables, providing both chains of the hidden states and
emission distributions that can be used for model comparison and conditional sim-
ulation.

Future work could be aimed at adding a more complex spatial structure between
stations to this Pólya-Gamma NHMM. Or the conditional independence assump-
tion could be relaxed and subregions could be considered each with their own
states. On smaller data sets, some have allowed K to be estimated; this could be
added to the model. We could also change the modeling assumptions to estimate
a coefficient for each of the exogenous variables for each of the states (not the
same coefficient for all states). Other NHMM assumptions, like having individ-
ual coefficients for the transition probabilities, could include ρij instead of just ρj

in equation (1). These types of changes to the proposed model would require the
consideration of trade-offs between model expressiveness and computational cost.

APPENDIX A: MODEL SELECTION

Model selection criteria. Model selection has two purposes: to choose the
number of states (K) and select the variables in xt and wts . The number of hid-
den states needs to be determined for the model. More flexible models that allow
for change in dimension tend to have complex algorithms that are computation-
ally expensive (i.e., reversible-jump MCMC) [Green (1995), Robert, Rydén and
Titterington (2000), Meligkotsidou and Dellaportas (2011)]. With such large data
sets, we can run the NHMM with a few values of K (number of hidden states) and
use a model selection criterion to choose an optimal number of states. The other
model choice is the selection of meaningful exogenous variables. Many exogenous
variables can be included in w and x, but some may not be statistically significant.

There are two types of metrics we can consider for the model choice decision:
model fit metrics (in-sample) or predictive metrics (out-of-sample). Standard in-
sample model fit metrics, like Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC), and deviance information criterion (DIC), account for
the number of parameters used in the model [Akaike (1974), Schwarz (1978),
Spiegelhalter et al. (2002)]. We found that in this model, because some of the as-
sumptions of the DIC failed to hold, it tended to choose over-parametrized models.
Bayes factors (BF) are not considered because the model has noninformative priors
on many of the parameters [Kass and Raftery (1995), Dempster (1974)]. Following
the recursive method given in Scott (2002) to calculate the log-likelihood, we re-
port the BIC values which are calculated as negative two times the log-likelihood
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plus a penalty for the number of parameters times the log number of observa-
tions [the parameters are counted: S = 63, A = 9, B = 6, K × (K − 1) for ξ ,
B × (K − 1) for ρ, K × S for β0, A × S for β1, (K − 2) × S for the γ cutpoints,
2 × S × K for λ, and z, p, L, M are latent variables that integrate out and are
not counted]. The second type of model metric is a predictive measure (out-of-
sample), and we consider it the preferable method in this situation. We plan to
hold out the last three years of the time series and perform a predictive log score
(PLS) [Gneiting and Raftery (2007), Meligkotsidou and Dellaportas (2011)]. After
the last observation yT s , there are r = 1, . . . ,R predictive time steps to the sim-
ulated chain (R = 3 × 365 for three years of predictive chains); the PLS is given
by

∑R
r=1 log(1/N

∑N
n=1

∏S
s=1 f (y∗

T +r,s)), where N is the number of MCMC iter-
ations.

The PLS is calculated for the predictive ability of the model, and the BIC is
calculated for the model fit. The BIC is calculated from the 27-years model fit
(p is the parameter count of the model), and the PLS compares held-out three
years to predictive conditional chains of three years generated from the model; see
Table 2 and Table 1 for results. Table 1 shows several models for comparison with
the NHMM and some different configurations of the exogenous variables. Table 2
shows several options of the number of hidden states for the preferred model from
Table 1. Overall, the hidden states describe general spatial rainfall patterns; some
states capture drier days, while others describe wetter weather patterns. This large
region may require more states (e.g., seven to twelve) than a more local region,
where three to six states might suffice.

Model selection results. We run a few baseline models to compare with the
NHMM; see Table 1. Model 1 is set up with no states (K = 0) and no exoge-
nous variables; this spreads rainfall homogeneously throughout the year. Model 2
is a standard weather state NHMM with all x inputs [i.e., BSISO1, BSISO2,
seasonality (four harmonic components)]; the optimal number of states for this
model is K = 8 using BIC. Model 3 treats each station independently (K = 0)
with the GLM linking inputs in w [i.e., seasonality (four harmonic components),
ENSO,WSI, IOD, Drift, PDO] with the mixing weights (there are no hidden states,
thus no x inputs). This model is similar to Katz and Parlange (1995), Furrer and
Katz (2007), Ailliot and Monbet (2012), where only a single station is modeled.
Model 4 uses all inputs of x and w; the placement of the inputs into either x or w
was chosen by the climate scientists based on physical properties of the variables
(i.e., larger regional variables and shorter timescale in x). Other combinations and
inputs were tested, but these were the ones that were significant to the model. One
of the other models tested was one with only x inputs, but it did not perform as
well as models including w.

Two other models were also considered that had similar (slightly worse) BIC
and PLS scores to Model 4. One was a GLM-HMM [Holsclaw et al. (2016), Heaps,
Boys and Farrow (2015)] which includes all possible exogenous variables in w.



BAYESIAN NHMM MODELING 419

TABLE 1
Comparing models for rainfall

No. Model States p BIC PLS

1. No inputs (no x or w) K = 0 252 1,565,454 −85.7
2. NHMM for x (no w) K = 8 2079 1,360,954 −74.2
3. Indep. GLM with w (no x) K = 0 819 1,406,455 −77.0
4. NHMM with x and w partial K = 7 2283 1,344,892∗ −73.6∗

∗ indicates the best value.

This model performed similarly in metrics but has some limitations. Because of
climate change, it is of interest to forecast daily rainfall based on evolving x vari-
ables to modulate the hidden state distributions; the GLM-HMM type of model is
stationary and has no mechanism for forecasting climate change like the NHMM.
Additionally, another model was considered where all exogenous variables were
included in both x and w. This model performed similarly in metric scores to
Model 4 (where variables were limited to being in either x or w), but this model
had far more parameters and suffered from lack of physical interpretability, as the
coefficients of x and w were highly correlated. The most parsimonious and inter-
pretable model is the NHMM with exogenous variables each included once, either
in x or w based on their physical characteristics. Each algorithm was run 2000 it-
erations with an additional 10% burn-in; the samples of the parameters converged
quickly to stationarity and the samples mixed well with no thinning [see Holsclaw
et al. (2017) for run times and trace plots]. The final model was run 10,000 itera-
tions with an additional 20% burn-in period.

Model 4 had preferable BIC and PLS metrics over all other models. Table 2
shows the the metrics for choosing the number of hidden states (K) for this model
(other models had similar values of K). The table also shows the number of param-
eters (p); for parsimony we want to choose a model with maximum PLS, minimum
BIC, and minimum p (∗ denotes these values on the table). K = 1 denotes a model
with a single constant state (which is equivalent to having no states K = 0). Ta-
ble 2 shows that the BIC achieves local minima around seven to ten states. The
PLS continues to improve with increased number of states. For parsimony it is
sometimes best to choose the number of states where the PLS value is no longer
improving as rapidly; this also happens around seven to ten states.

We compare the PLS scores of the NHMM (Model 4) to a baseline model with
no states (Model 3). Model 3 fit independent GLM models to each station, whereas
Model 4 includes the hidden states and spatial information. Model 3 has a PPL of
−77.0 for the baseline model compared to the NHMM with K = 7 states with a
PPL of −73.6. The difference between the two log scores over the three forecast
years (predictive conditional chains) is given by exp((−73.6− (−77.0))/3) = 3.1,
which means the NHMM is 3.1 times better at annual predictive ability. Also, we
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TABLE 2
Choosing the number of states for the rainfall model

K p BIC PLS

0–1 693∗ 1,405,643 −77.1
2 953 1,376,646 −75.6
3 1215 1,366,881 −75.0
4 1479 1,356,233 −74.4
5 1745 1,351,150 −74.0
6 2013 1,346,841 −74.0
7 2283 1,344,892 −73.6
8 2555 1,342,660 −73.6
9 2829 1,342,309 −73.5

10 3105 1,341,327∗ −73.3
11 3383 1,341,566 −73.2
12 3663 1,341,514 −73.1∗
13 3945 1,341,798 −73.2
14 4229 1,342,378 −73.0∗
15 4515 1,342,853 −73.0∗

X and W have inputs based on physical properties of the region
(∗ desirable numerical score).

compare the PLS for Model 4 with K = 7 states and K = 15 states: exp((−73.0 −
(−73.6))/3) = 1.2, and find only a 1.2 times better annual predictive ability by
including the eight additional states.

APPENDIX B: CLIMATE VARIABLE DETAILS

Six established climate indices related to rainfall in India are as follows: West-
erly wind Shear Index (WSI), El Niño/Southern Oscillation (ENSO), Indian Ocean
Dipole (IOD), Pacific Decadal Oscillation (PDO), and two components of the bo-
real summer intraseasonal oscillation (BSISO1 and BSISO2).

1. WSI: Year-to-year (interannual) changes in the strength of the summer mon-
soon winds are closely linked with monsoon rainfall variations, and we use
the Westerly Shear Index (WSI), as defined in Wang and Fan (1999) as WSI1,
to represent these. The WSI is defined by the vertical shear of the zonal wind
(u850–u200) averaged over the box (5N–20N, 40E–80E), and was used in an
NHMM for Indian rainfall by Greene et al. (2011). We use monthly averaged
values, with the mean seasonal cycle subtracted, so as to focus on interannual
variations in the monsoon circulation.

2–3. ENSO and IOD: ENSO and IOD indices were computed from the NOAA Ex-
tended Reconstructed Sea Surface Temperature Dataset, version 3b [Smith
et al. (2008)], via the IRI Data Library (http://iri.columbia.edu). The El
Niño/Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are

http://iri.columbia.edu
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TABLE 3
Two-way input correlations

ENSO WSI IOD PDO BSISO1 BSISO2

ENSO — −0.51 0.28 0.41 −0.01 0.02
WSI — −0.19 −0.25 −0.01 −0.04
IOD — 0.09 −0.03 −0.02
PDO — −0.08 0.01
BSISO1 — 0.07
BSISO2 —

known influences on rainfall on interannual timescales [Gadgil (2003)].
Monthly sea surface temperature (SST) in the Nino3.4 region (150W–90W,
5N–5S) are used to define the ENSO index; the monsoon tends to be stronger
during the La Nina phase, when this ENSO index is negative [Gadgil (2003)].
The IOD index is defined by the difference in monthly SST anomalies in the
western (50E–70E, 10N–10S) and eastern (90E–110E and 0S–10S) equato-
rial Indian Ocean; the monsoon tends to be stronger when IOD is positive
[Gadgil (2003)].

4. PDO: While the Pacific Decadal Oscillation (PDO) has a less well-under-
stood impact [Joseph et al. (2013)], the PDO index is defined by Zhang,
Wallace and Battisti (1997) to be the leading PC of monthly SST anomalies
in the North Pacific Ocean, poleward of 20N. The monthly mean global av-
erage SST anomalies are removed to separate this pattern of variability from
any “global warming” signal that may be present in the data. This data set set
is from the University of Washington (http://research.jisao.washington.edu/
data_sets/pdo/).

5–6. BSISO1 and BSISO2: On sub-seasonal timescales Indian monsoon rainfall
is impacted by the boreal summer intraseasonal oscillation (BSISO), data ob-
tained from the APEC Climate Center (APCC, http://www.apcc21.org) [Lau
and Chan (1986), Yoo, Robertson and Kang (2010)], for which we use the
two indices BSISO1 and BSISO2 defined by [Lee et al. (2013)].

The cross-correlations between these daily series are given in Table 3 and are
relatively low. Monsoon circulation anomalies (WSI) are quite strongly related to
ENSO and PDO (r = −0.51 and 0.41 resp.), less strongly with IOD (r = 0.28),
but not to the BSISO.

Acknowledgments. The rainfall data set was obtained from the Climate Pre-
diction Center, National Centers for Environmental Prediction, National Weather
Service, NOAA, U.S. Department of Commerce, from the Research Data Archive
at the National Center for Atmospheric Research, Computational and Information
Systems Laboratory (http://rda.ucar.edu/datasets/ds512.0).
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SUPPLEMENTARY MATERIAL

Additional Results and Figures (DOI: 10.1214/16-AOAS1009SUPP; .pdf).
The Supplemental Material includes figures for each individual station for many
of the metrics and plots. A few additional results and metrics are also included.
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